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Abstract 

This paper proposes training an artificial neural network (ANN) by a particle swarm optimization (PSO) 

technique to predict the flashover voltage of outdoor insulators. The analysis follows a series of real-world tests 

on high-voltage insulators to form a database for implementing artificial intelligence concepts. These tests are 

performed in various degrees of artificial contamination (distilled brine). Each contamination level shows the 

amount of contamination in milliliters per area of the isolator. The acquisition database provides values of 

flashover voltage corresponding to their electrical conductivity in each isolation zone and different degrees of 

artificial contamination. The results show that ANN trained by PSO can not only provide better prediction 

results, but also reduce the amount of computation efforts. It is also a more powerful model because: it does 

not get stuck in a local optimum. In addition, it also has the advantages of simple logic, simple implementation, 

and underlying intelligence. Compared to the results obtained by practical tests, the results obtained present 

that the PSO-ANN technique is very effective to predict flashover of high-voltage polluted insulators. 
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1. INTRODUCTION 

 

One of the most significant problems in power 

transmission is the pollution flashover, which occurs 

with insulators in high voltage transmission  for 

many reasons, like the different densities of pollution 

in different regions, the inhomogeneous distribution 

of contamination on the insulation surface, and the 

unspecified influence of humidity on the pollution 

[1-3]. 

The cap and pin type performance is regarded as 

an essential factor in determining the reliability of 

the electrical system. The necessary items for the 

insulators not only resist the normal operating 

voltage, but also prevent flashovers from occurring. 

The reduced performance is mainly due to airborne 

dirt deposits which, with mist or moisture, can form 

a conductive or partially conductive surface layer 

and increase the risk of flashover [4]. 

Among neural networks, the most common and 

famous is the Multi-Layer Perceptron neural 

network applied using the normalized BP algorithm 

(back-propagation) or one of its derivatives, which is 

called BPNN. If the initial weight set is not chosen 

correctly, the BP algorithm using the steepest 

descent search technique is likely to get stuck in a 

 
© 2022 by the Authors. Licensee Polish Society of Technical Diagnostics (Warsaw. Poland). This article is an open 

access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license 
(http://creativecommons.org/licenses/by/4.0/). 

local optimum. Sometimes, computations may even 

overflow or oscillate between optimal computations.  

The BPNN limitations motivated many researchers 

to look far off the existing models to find more 

powerful optimization techniques for improving 

methods to optimize solutions [5]. 

An important discovery of these powerful 

techniques is the application of evolutionary 

algorithms (EA) to optimize neural networks. 

Particle swarm optimization (PSO) is one of these 

evolutionary computing techniques, its study subject 

was suggested by Eberhart and Kennedy, and it was 

derived from simulating flocks of birds and fish 

behavior [6]. The native purpose was to graphically 

simulating flocks of birds’ graceful but 

unpredictable dance. At some stage in the 

development of the algorithm, has been achieved 

that the conceptual model was actually improved, so 

many unoptimized parameters were removed, 

resulting in the basic PSO algorithm.  Karpat and 

Ozel proposed optimization of multi-objective 

optimization using neural network modeling and 

flock intelligence for hard turning [7]. 

Zhang and Shao explain a new scalable algorithm 

to develop ANNs dependent on the particle swarm 

optimization technique wherein the ANN 
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architecture and weights are adaptively adjusted 

based on the quality of the neural network to reach 

an optimal architecture or stopping criterion [8]. The 

fulfillment of the basic PSO algorithm and the 

constrained PSO algorithm are compared (with and 

without mutation) on some test operations of 

different dimensions by Stacey et al [9]. They found 

that, in some cases, the use of restricted mutant PSOs 

could be significantly improved.  

To avoid premature convergence an upgraded 

PSO algorithm was suggested to train neural 

networks using a population diversity approach by 

Zhao et al [10]. 

Parameters of grinding process such as work 

piece speed, ring depth and feed rate are optimized 

using PSO technology by Asokan et al [11]. 

In this work, PSO trained an ANN is proposed 

for predicting the flashover voltage on polluted of a 

175CTV type outdoor insulator, widely used by 

(SONELGAZ) the Algerian Electricity and Gas 

Company. This was not used only to measure the 

improved predictive power of this relatively new 

computer intelligence technique relative to existing 

traditional techniques, but also to focus on the 

intelligence behind group migration, which involves 

individual and social cooperation, a union that was 

thought to be swarm intelligence [5].We considered 

in our work other important parameters influencing 

the insulator flashover: the high applied voltage, 

electrical conductivity in each isolation zone and 

different degrees of artificial contamination unlike 

other authors who used only the leakage current as 

an essential parameter to study the insulator 

flashover phenomenon in their published works. 

 

2.  ALGORITHM PSO 

Eberhart and Kennedy introduced and elaborated 

the PSO (a swarm algorithm) that is inspired by 

particle social animals’ behaviour like fish or birds. 

It has been categorized as one of the metaheuristic 

techniques [12]. It has been viewed in the statistics 

community as an evolving computational technique 

with many benefits [13-16].  

This optimization method is based on the 

collaboration of individuals with each other. It also 

has similarities with ant colony algorithms, which 

are also based on the concept of self-organization. 

This idea holds that a group of unintelligent 

individuals can possess a complex global 

organization. 

Thus, thanks to very simple displacement rules, 

the particles can gradually converge towards a global 

minimum. However, this metaheuristic seems to 

work better for spaces in continuous variables [17]. 

PSO explores the search space through 

successive trials of boid positions, their movements 

being managed by simple equations. Thus, the 

location of each boid in the search space represents 

a potential solution to the optimization problem. And 

the “quality” associated with each of these solutions 

is quantified by the objective function, optimized 

little by little according to the positions, more or less 

optimal. Each particle is informed of the best point 

found in its neighborhood and tends to move towards 

that point [18]. 

There are three important parameters which have 

an essential role: position, speed and fitness. To 

solve an optimization problem using PSO, we 

follow: 

a. Initialize a population of individuals (particles) 

with random velocities and positions in the 

problem domain. 

b. Fitness calculation value for all particles 

c. Particles investigating fitness. 

d. Update of particle velocity and position using 

equations (1) and (2). 

𝑉𝑖𝑗
𝑡 = 𝑥 [𝑤𝑣𝑖𝑗

𝑡−1 + 𝑐1𝑟1(𝑝𝑖𝑗
𝑡−1 − 𝑥𝑖𝑗

𝑡−1) +

𝑐 2
𝑟2(𝐺𝑗

𝑡−1 − 𝑥𝑖𝑗
𝑡−1]

                                                 
(1) 

𝑥𝑖𝑗
𝑡 = 𝑥𝑖𝑗

𝑡−1 + 𝑣𝑖𝑗
𝑡

                                               
(2) 

With c1 and c2 are two positive constants called 

acceleration constants. r1 and r2 random numbers, w 

is an inertia weight, x the particle current position, pt 

and Gt indicate the particle best position (p_best) and 

the swarm best position (g_best) , respectively[19]. 

The advantage of PSO is the simple coding and 

its low computational cost [20]. Since PSO 

algorithm performed accurately to solve global 

optimum, it was applied to train the MLP in the 

current study. 

 
3. ARTIFICIAL NEURAL NETWORK 

 

Like a powerful analysis method, ANNs behave 

similarly to human and animal system of biology 

[21-22]. They are important to find the inputs and 

outputs relationship in a noisy and complex data set. 

The multilayer perceptron (MLP) is one of its 

important types. 

The experience determines mainly the structure 

of multi-layer predictive networks and it was found 

that there is no valid formula suitable for different 

situations according to previous studies. An MLP 

network is composed of one or more input layers, 

one or more of hidden layers and an output layer 

[23]. Recently, ANNs have been widely and 

successfully used [22-24]. 

 We express the mathematical formulation of 

MLP as follows: 

𝑆𝑗 = 𝐹(∑ 𝑤𝑘𝑗𝐸𝑗 + 𝐵𝑗)
𝑛
𝑗=1                                (3) 

Where F indicate the activation function, n 

represent the number of nodes. wkj and Bj indicate the 

connection of the weights and polarization, 

respectively. It can also be noted that Ej and Sk are 

the node value in the previous layer of j and the node 

value in the current layer of k, respectively [25]. 

Typical ANN model as shown in figure 1, 

training the network is the next task once the 

structure of the ANN is formed. 
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Fig. 1.A typical artificial neural network (ANN) 

 

4. Test object 

 

A 175CTV high-voltage glass insulator is used 

as the test object, as shown in figure2. The insulation 

is artificially soiled and tested in our laboratory, as 

shown in figure 3 [26-28]. 

 
Fig. 2. Experimental setup at industrial frequency 50Hz 

 

Where: 

V.G.U: Voltage control unit, T.O: Test object (175 

CTV insulator), 

R.T: Regulating transformer, H.V: High voltage 

transformer, 

Cm: A capacitive for measuring the applied voltage. 

 

5. PREPARING THE INSULATOR 

 

Artificial contamination consists of saline 

solution and distilled water. This artificial 

contamination is poured into each area of insulation. 

Figure 3 and table 1 show the quantity of each fixed 

saline solution for different insulator levels [26-28]. 

We repeat the test performance five times 

changing the values of conductivity of the brine 

poured in each zone. The average value of the five 

measured voltages is considered as the value of the 

flashover voltage. This is done with the cleaning of 

the insulator surface after each test to remove dirt or 

grease.  

 

 
Fig. 3. The cap and pin insulator 175CTV real model, 

(insulator zones+levels) 

 

Table 1.  The artificial pollution levels and polluted zones 

 
6. PREDICTION OF INSULATOR 

FLASHOVER VOLTAGE BY PSO-ANN  

IN MATLAB 

 

The following seven steps were used to train 

ANN with PSO: 

Step 1. Data collecting. 

Step 2. Network creating. 

Step 3.  Network configuration. 

Step 4. Initializing the weights and biases. 

Step 5. Training the network using PSO . 

Step 6. Validating the network. 

Step 7.  The network use. 

The optimal parameters for ANN-PSO were as 

follows: 

(a) Ten (10): number of hidden neurons;  

(b) Six thousands (6000): number of iterations; 

(c) One hundred (100): number of particles; 

(d) Acceleration constants c1=1 and c2 = 2. 

 
Fig. 4. The training network model in MATLAB 

 

7. EVALUATION PERFORMANCE INDICES 

The performance of particle swarm optimization 

for training artificial neural networks is expressed in 

terms of root mean square error (RMSE), can be 

computed by the following equation:  

𝑅𝑀𝑆𝐸 = {
∑ (𝑦𝑡𝑒𝑠,𝑖−𝑦𝑝𝑟𝑒,𝑖)
𝑁𝑈
𝑖=1

𝑁𝑈
}

1
2⁄

                  (4) 

NU stands for the number of instances, yprei and 

ytes,i indicates the predicted  and the testing value of 

one data point i, respectively [29].  

Zones 

Pollution levels (ml) 

Level_1 

(L1) 

Level_2 

(L2) 

Level_3 

(L1) 

Zone 1 11.60 23.30 34.90 

Zone 2 13.30 26.60 39.90 

Zone 3 23.30 46.60 69.90 
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 To assess the quality of the PSO-ANN models, 

determination coefficient (R2) and mean absolute 

percentage error (MAPE), were used as the 

indicators of the model’s performances. 

 We express the mathematical formulation of R2 

and MAPE as follows: 

𝑅2 = 1 −
∑ (𝑦𝑡𝑒𝑠,𝑖−𝑦𝑝𝑟𝑒,𝑖̅̅ ̅̅ ̅̅ ̅̅ )

2𝑁𝑈
𝑖=1

∑ (𝑦𝑡𝑒𝑠,𝑖−𝑦𝑡𝑒𝑠,𝑖̅̅ ̅̅ ̅̅ ̅̅ )
2𝑁𝑈

𝑖=1

                       (5) 

𝑀𝐴𝑃𝐸 = 100%
∑ [𝑦𝑡𝑒𝑠,𝑖−𝑦𝑝𝑟𝑒,𝑖] 𝑦𝑡𝑒𝑠,𝑖⁄𝑁𝑈
𝑖=1

𝑁𝑈
          (6) 

 

 8. RESULTS AND DISCUSSION 

 

The insulation flashover voltage values are 

calculated by the proposed PSO-ANN concept 

knowing the conductivity of the artificial 

contamination and  level of pollution  in each 

insulator area. 

 

8.1. The two algorithms parameter settings 

The essential parameters used in the PSO 

technique are the number of generation periods, the 

acceleration constants values c1 and c2 (and 

therefore the value of the limiting factor k), group 

size (number of birds), and the inertial weight ω. 

 To predict insulator flashovers,  we use a neural 

network  of a three-layer as shown in figure 4: four 

input neurons(three levels and pollution 

conductivity), ten neurons in the hidden layer, and 

one output neuron.  

Perform a series of test runs (with fixed values of 

parameters c1 and c2) to determine the best 

architecture by calculating the average error of the 

trained network (up to 6000 iterations). 

 

8.2. Performance of the PSO -ANN 

Table 2 shows the performance of the neural 

network trained by PSO. The table appears  that an 

upgraded prediction results for the flashover voltage 

of outdoor insulators provided by the PSO- ANN. 

The parameters in the table show the higher 

learning ability of the network resulting from the 

inherent robustness of the PSO algorithm in finding 

the optimal solution. 

The parameter R shows the target output and the 

predicted output correlation by network and the 

ideal value of R equals one. Figure 6 shows 

estimated and actual values correlation of critical 

flashover voltage for the training set. 

 
Fig. 5. The performance of PSO -ANN model for training 

Fig. 6. Estimated and actual values of critical 

flashover voltage on the training dataset of the  

PSO –ANN model correlation 

 

Estimated and actual values of critical flashover 

voltage for the testing set correlation  was shown in 

figure 8. The points are clearly located almost on the 

line of bestbackdown, which means the network 

predict the duty ratio for testing data set very well. 

Figure 8 shows the constract between the 

predicted data and the experimental data which 

isused to evaluatethe performance of the model 

prediction.We notice in this figure, there is an 

adequate agreement between the simulated and 

experimental values and an improved performance 

of the PSO-ANN model. 

The obtained results showed thePSO-ANNmodel 

compatibility and efficiency to solve problems of 

environment. 
 

Table 2. Statistical model validation parameters performance 

Coff.of 

correlation 

R_train 

Coff.of 

correlation  

R_test 

Coff.of determination  

(R_train)2 

Coff.Of determination  

(R_test)2 
MAPE_test RMS_test 

0.99814 0.99821 0.99628 0.99642 1.1969 0.5406 
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Fig. 7. Estimated and actual values of critical 

flashover voltage on the testing dataset of  the PSO 

–ANN model correlation 

 

 
 

Fig. 8. The performance of PSO -ANN model 

for testing 

 

9. CONCLUSION 

 

This paper focuses on  swarm intelligence 

importance, such as PSO, in predicting insulator 

flashovers. The proposed method is simulated with 

MATLAB. To do this,  PSO used to train the 

performance of the neural network. The main step in 

this study is to gather the necessary databases. 

Accurate selection of the parameters of this 

technique will lead to  better results. Insulator 

flashover based on many parameters; but we only 

considered  the high applied voltage values, the 

amount of artificial contamination, and the artificial 

contamination conductivity in our work. The PSO-

ANNperformance is demonstrated byroot mean 

square error (RMSE), determination coefficient (R2) 

and mean absolute percentage error (MAPE). The 

risk of insulation flashover increases as 

contaminants build up on the insulating layer and the 

contaminants become more conductive. The 

respective results show that PSO for training ANNs 

models are acceptable. 

Thus, the suggested method may be more 

practicle in estimating the critical flashover voltage 

of different polluted insulators. The results of 

upgraded prediction proove the validity of the 

particle swarm optimization in using individual and 

swarm intelligence to find the best solution. 
 

APPENDIX 

The experimental data are given in Table 3 

Zones 

conductivity 

(g/ml) 

Zone 1(ml) Zone 2(ml) Zone 3(ml) 
Applied voltage 

(kV) 

Practices 

tests 

 

7.5 

 

11.6 13.3 23.3 45.8 Flashover 

23.3 26.6 46.6 39.7 Flashover 

34.9 39.9 69.9 34.8 Flashover 

 

20 

 

34.9 39.9 69.9 23 Flashover 

23.3 26.6 46.6 26 Flashover 

11.6 13.3 23.3 34 Flashover 

 

50 

 

7.2 15 10 19 Flashover 

4.1 19.4 33.2 19.7 Flashover 

5.5 7.5 14 17.5 Flashover 

 

80 

 

8.2 38.8 38.8 39.4 Flashover 

14.4 30 20 38 Flashover 

10.1 15 28 35 Flashover 

 

100 

 

8.2 38.8 67.4 39.4 Flashover 

14.4 30 20 38 Flashover 

10.1 15 28 35 Flashover 

 

120 

 

11.6 13.3 23.3 38.5 Flashover 

23.3 26.6 46.6 35.4 Flashover 

34.9 39.9 69.9 33.6 Flashover 
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